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OXIDATIVE TRIGGERING FOR AROMATIZATION
OF THE NEOCARZINOSTATIN CHROMOPHORE

Toshiyuki Tanaka, Kenshu Fujiwara, and Masahiro Hirama*
Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

Abstract: Formation of an appreciable amount of ketone 4 has been proved in the aerobic decomposition of
neocarzinostatin chromophore 1, which indicates that hydroperoxy radical produced from thiol and molecular
oxygen can trigger the aromatization of 1 as well.

Activation by thiol of the labile nonprotein chromophore 11 of the antitumor antibiotic neocarzinostatin
(NCS)2 generates a free-radical intermediate, which abstracts hydrogen from DNA and causes its oxidative
scission under aerobic conditions.3 Myers recently assigned the structure of the chromophore-thiol adduct and
proposed the chemical process of its formation:# nucleophilic thiol addition to the vinylogous epoxide
functionality to form enynecumulene intermediate#d followed by Masamune-Bergman’ type transannular
cyclization to give an indacene diradical. Very recently we have studied the mode of aromatization of the 10-
membered ring analogues of 1, and found that the oxygen-promoted radical triggering mechanism becomes
important in their aromatization reactions under aerobic conditions.6:7 In particular, the formation of the
oxidation products 26 and 37 implied the hydroperoxy radical produced from thiol and oxygen moleculed
triggered the aromatization. Thus, we examined such possibility for the aromatization of 1.
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Decomposition of 12(5.0 x 10-3 mM) was performed in 1.6M methanolic acetic acid in the presence of
air and methyl thioglycolate (1.5 x 10-2mM, 3 equiv.) at -30°C in the dark and also under the deoxygenated
conditions. The reactions were monitored by 400MHz-1H NMR. Pseudo-first-order kinetics were obtained for
both reactions, and the decomposition of 1 under aecrobic conditions turned out to be slightly slower
[ Ranaerobicy Kaerobicy=1.3; 4,2=2.8 h (aerobic); #,,=2.2 h (anaerobic)], while the 10-membered ring analogues
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Figure 1. HPLC profiles of decomposition products
(after 24h) under aerobic conditions (A) and anaerobic
conditions (B). Arrows indicate the position of 1.

decomposed more quickly in the presence of oxygen.5s” The HPLC profiles of the products from 1 under those
conditions were similar as shown in Figure 1, but a prominent difference is the presence of the peak F-0 only in
the aerobic decomposition, which indicates the peak F-0 be originated from the oxidation of 1. The product
corresponding to the peak F-0 was isolated by HPLC? (ca.10% yield), and its structure was determined by
600MHz-!H NMR, FTIR and FABMSto be indacene-12-one derivative 4.10 The known thiol adduct 54
(ca.10%) and the new methanol adduct 66:11.12 (ca.5%) were also isolated from the peaks F-1 and F-2,
respectively. The peak F-4 proved to be the methyl naphthoate 7, while the peak F-3 has not further been
characterized because it consists of at least three products.

Since 1 deteriorated only very slowly (#,2 =8.5 d at 10°C) in the absence of thiol under aerobic
conditions in the dark, the formation of the ketone 4 is likely due to the aromatization triggered by the addition of
hydroperoxy radical generated from thiol and oxygen,8 but not from the direct reaction with molecular oxygen.
Interestingly, when the aerobic decomposition was performed in the presence of deuterated thiol (3 equivalent of
DSCH,CO>CH3) in 1.6M CD3CO2D/CD30D, IH NMR analysis of 4 showed that deuterium had been



5949

incorporated at C6 to the extent of ca. 90% but at C2 only to ca. 25%, while ca. 90% incorporations of deuterium
were observed at both C2 and C6 in 5.13 This low deuterium incorporation at C2 in 4 is explicable by favorable

intramolecular shift of benzylic hydrogen in the radical intermediate 9 accompanied with hydroperoxide

homolysis leading to the ketone 4 as shown in Scheme 1.

These observations soggest that the aromatizations of the neocarzinostatin chromophore 1 triggered by
hydroperoxy radical would become important under the physiological conditions when nucleophilic thiol groups
such as glutathiorie!4 are insufficient. In such cases DNA scissions by the diradical intermediate 9 might be less
effective due to the above intramolecular termination reaction, if the C2 radical plays an important role for

hydrogen abstraction from DNA strand.

Scheme 1

.00D + RS+ == O,+ RSD
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